

CEC EPC Project 14 - 079

Assessing the Ability of Smart Consumer Devices to Enable More Residential Solar Energy

Project Overview

This project will **identify**, **implement**, **and test** (both in lab and field) optimal methods by which smart inverters can mitigate the issues that otherwise would limit local high penetrations of residential PV. This project will identify how Rule 21 functions can be used and configured so that multiple smart inverters work in harmony (supporting one another's actions).

This project will also identify how other common consumer devices, such as electric vehicle chargers and other smart loads, can serve to further enable high penetration levels of residential solar PV into the distribution system.

CEC EPC Project 14 - 079

RESEARCH QUESTION

Can residential controllable load devices be effectively managed to enable more PV on the grid, while still meeting customer expectations? **PROGRESS TO DATE**

Algorithm for Smart Inverters identified

2

3

Lab test demonstrates that home energy management system supports communication between smart devices

Technology extension feasibility identified by Intwine to support demand response

280

OPPORTUNTIES TO EXPLORE

- Test location that has multiple, appropriately equipped homes on the same transformer
- Test DR and storage capability using smart consumer devices

LEVERAGE POINTS

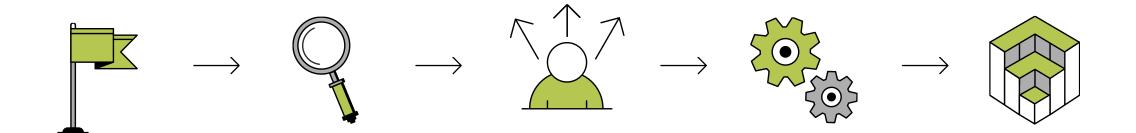
- SMUD and SCE both interested in further tests
- Intwine Will Kit demonstrated interoperability
- Off the shelf, market availability
- Ease of consumer adoption can facilitate program deployment cost effectively

FINALIZE TEST BED DESIGN

- Meeting field deployment requirements to continue testing
- DR capability needs to be added as a project addendum to original CEC scope

ENGAGE SPONSORS AND PARTICIPANTS

- Collaborate with SCE and SMUD in scoping optimal test bed locations
- Identify project stakeholders to lead demand response capability testing



280

Logic Model Assessment Structure

Updated: September 2018

PROJECT GOALS

Goals of this EPIC research and development project

KEY FINDINGS

Successes and challenges identifies through research and development.

OPPORTUNITIES

Activities or circumstances that could fill in the gaps and leverage points to enable forward movement.

EXPECTED OUTCOMES

Most likely near term and longer term outcomes identified by the TA&D project team.

NEXT STEPS

Knowing what we know now, these are the suggested next steps.

PROJECT GOALS

SMART INVERTER TECHNOLOGY

Determine if combinations of traditional inverters and smart inverters using Rule 21 functions can operate side-by-side in a stable and beneficial fashion to enable more PV on the grid.

CONTROLLABLE LOAD DEVICES

Determine if power sharing among neighboring controllable loads can enable more PV on the grid. Devices tested include: 1) Variable-Speed Pool Pump, 2) HPWH, 3) Programmable Communicating Thermostats, AND 4) EV Charging Equipment

DEVICES

TECHNOLOGY EXTENSION FOR DR

Extend load control technology and algorithms from CEC project to enable flexible DR

KEY FINDINGS

SUCCESS

- Extensive lab testing procedures have been developed
- Lab verification of Rule 21 behavior has begun for three inverter models

CHALLENGES

- Reliable inverters preconfigured with Rule
 21 settings are scarce
- Tested inverters (from major manufacturers)
 are not sufficiently mature for field testing

SUCCESS

- Distributed control algorithm with PV-aware scheduling of flexible loads
- Ability to communicate with devices using Intwine-developed software
- Fully distributed and autonomous; no communication with utility required

CHALLENGE

SUCCESS

6 mos

CHALLENGE

· Not part of CEC project

 A common method to manage assets behind the meter

Extensible controls architecture can be

extended to support DR-control objectives

Intwine Connect estimates full integration in

Communication with pre-Phase 2 inverters

MISSING PIECES

- DER devices could also include storage
- Utility champion for further research

LEVERAGE POINTS

- SCE
- Controls vendors

NEAR-TERM OUTCOMES

- Champion secured
- Testing location determined

LONGER-TERM OUTCOMES

- Controllable consumer load provides DR capability
- Plan for commercial deployment

EXPECTED OUTCOMES

NEAR-TERM OUTCOMES

- Confirmation of acceptable behavior of adjacent Rule 21 inverters
- Improved settings to avoid undesirable interactions

LONGER-TERM OUTCOMES

- Field test completed
 Research question answere
- Research question answered Recommendation to move forward or not

NEAR-TERM OUTCOMES

- Test sites secured
- Testing commences within the next year

LONGER-TERM OUTCOMES

- Integrate the application for future models of ZNE homes
- Ready for commercialization
- Increased hosting capacity of PV

NEXT STEPS

NEXT STEPS

ACTIVITY/ OWNER

3. EPRI. IOUs

EPRI: CEC

2.

1.

2.

- 1. Additional field testing
- Engage SCE in field demonstrations.
 Perform field testing

ACTIVITY/ OWNER

- 1. CEC; EPRI
- 2. SMUD; SCE
- 3. Intwine.

NEXT STEPS

- 1. Secure project champion
- 2. Field test

ACTIVITY/ OWNER

- 1. Engage possible champions
- 2. Share opportunity

NEXT STEPS

1. Recommend new Rule 21 settings

3. Testing of other Rule 21 inverters

Additional field testing

EPRI, IOUs, CPUC

280

OPPORTUNITIES

CA-wide Rule 21 standard

Incentive for manufacturers

Real-world Rule 21 inverter experience for

Test location that has multiple, appropriately

Participants receive (and can retain)

Subset off devices will work for field test

equipped homes on the same transformer

LEVERAGE POINTS

other utilities.

MISSING PIECE

LEVERAGE POINTS

SMUD engaged

· Easy, wireless installation

upgraded load devices

Thank you for coming

Mark S. Martinez

Senior Program Manager, Emerging Markets & Technology Customer Programs & Services mark.s.martinez@sce.com

